Battery Waste Management and Disposal

Battery Waste Management and Disposal

The Ministry of Environment, Forest and Climate Change (MoEFC), Government of India, has issued a notification on rules for battery waste management in view of the shift to electric vehicles. Anticipating a need to have an organised channel for the safe disposal and recycling of batteries, the rules, called the Battery Waste Management Rules, 2022, are applicable to the producer, dealer, consumer, entities involved in collection, segregation, transportation, refurbishment and recycling of waste batteries. 

All types of batteries, regardless of their chemistry, shape, volume, weight, material composition and use are covered under the rules. The rules also have a provision for penal action in case of a violation and imposition of environmental compensation. The ministry has also set a minimum recovery percentage target for recovered materials out of dry weight batteries. 

The recovered materials will be then used to produce new batteries. For FY2024-25, the recovery target is set at 70 percent whereas for FY2025-26, it is 80 percent. The target for FY2026-27 is 90 percent. Mentioning that the recovery target may be reviewed by the committee once every four years to revisit the minimum levels of recovered battery materials in light of technical and scientific progress and emerging new technologies in waste management, the notification is expected to contribute towards enhancing each and every EV’s cost to the environment in India. This is especially in connection with the fact that nearly 1.4 million EVs as of July 2022 are said to operate in India if the data shared by the ministry of road transport and highways is relied upon. More than half of this volume is claimed to consist of electric three-wheelers followed by two-wheelers and passenger cars. 

The PLI scheme and other policy changes in terms of manufacture and sale of electric vehicles, it is clear that a strong battery ELV and disposal policy has to be in place. From the cost to the environment point of view, a policy extension in terms of the manufacture of such batteries locally down to the fuel cell level should also taking into view the ability of the battery to perform efficiently through out its lifecycle, thus staying alive for longer and when it does die, it should be recyclable to a great extent. 

Dr Akshay Singhal, Founder and CEO of Log9 Materials, averred. “The newly introduced Battery Waste Management standards by the Government under the Extended Producer Responsibility (EPR) concept addresses two important concerns. An efficient and effective waste management of all Li-Ion batteries that are nearing the end of their useful life and are expected to end up in landfills in a few years, avoiding any residual pollution impact. Second is the emphasis on investing in and nurturing the recycling of such used batteries, reducing the reliance on fresh resource mining.” 

undefined

Shubham Vishvakarma, CEO and Chief of Process Engineering of Metastable Materials, said, “The Battery Waste Management Rules announced by the Government of India is an excellent and much-needed step towards bringing to the fore innovations and myriad growth opportunities for the battery waste management and battery treatment space in our country, especially at a time when the ongoing EV boom in India is leading us to increasing concerns on e-waste.” “Under the new Rules notified, the Government has mandated a minimum percentage of recovery of various materials from end-of-life batteries, which is bound to enable the growth of novel business models such as urban mining in order to reduce India’s foreign dependency on procuring raw materials for EV batteries and other types of batteries,” he added. 

undefined

Ashok Sudrik, Chief Scientist, Infinite Orbit Research and Development Pvt Ltd, commented, “The Battery Waste Management Rules, 2022, were much needed and we are happy that government has started taking cognizance of the hazardous waste being created and the recycling or waste collection. Other than waste management recycling rules, there is a need for manufacturers to incorporate extension of battery life technologies, keep the lithium content minimal and develop innovative cell chemistry. The life of a battery should be 4000 to 6000 cycles, which means a life spane of about 10 to 15 years. BaaS (Battery as a Service) concept with swappable batteries will be a big contributor to the ultimate goal of keeping cost to the environment low.”

In other parts of the world

In Canada, Li-Cycle will begin constructing a USD 175 million plant in Rochester, N.Y., for recycling of lithium-ion batteries. On the grounds of what used to be the Eastman Kodak complex, the plant will be the largest of its kind in North America with an eventual capacity of 25 metric kilotons of input material and a capability to recover 95 percent or more of cobalt, nickel, lithium and other valuable elements through zero-wastewater, zero-emissions process. Ajay Kochhar, Co-founder and CEO, Li-Cycle, said, “We'll be one of the largest domestic sources of nickel and lithium, as well as the only source of cobalt in the United States."  

In May 2022, Hydrovolt, the largest battery recycling plant in Europe started operations in Fredrikstad, Norway. A joint venture between two Norwegian companies – Hydro and Northvolt, the plant has the capacity to process 12,000 tonnes of battery packs per year, enough for the entire end-of-life battery market in Norway currently. Claimed to have the capability to recover 95 percent of the materials used in an EV battery including plastics, copper, aluminum and ‘black mass’, a powder containing various elements inside lithium-ion batteries like nickel, manganese, cobalt and lithium. 

Not just in Europe or US, the rise of Electric Vehicles (EVs) and associated battery gigafactories is pushing forward the creation of a battery recycling value chain. It is a matter of debate whether it got to be a close-loop or an open-loop design in terms of sourcing of batteries to recycle and to put the resulting material to good use so that the cost to the environment is kept minimal. As the demand for use of ‘green’ electricity source gathers pace the world over, on the other end of the spectrum, which involved the end-of-life vehicle for EVs, the demand for recycling in increasing partly due to regulations – the EU regulations have just intensified – and partly by a demand for re-use of materials due to geo-political reasons as well. A strong desire to localise supply chains and safeguard critical raw materials are also the driving factors.  

Visteon Showcases High-Performance Cockpit Computing, Expands Partnership With Mahindra & Mahindra Too

Visteon

Visteon Corporation has announced an expanded technology partnership with Mahindra & Mahindra that will see its next-generation SmartCore Pro cockpit domain controller deployed in Mahindra’s XUV7X0 SUV lineup.

Unveiled at CES 2026, the SmartCore Pro builds on the SmartCore system introduced in the Mahindra XUV700 in 2021. The new system integrates cockpit electronics, surround view camera technology and telematics on Mahindra’s Adrenox+ platform. It features a three-display configuration supporting vehicle information, infotainment, ADAS visualisation and connectivity, alongside an integrated 360-degree camera system.

Francis Kim, Vice-President of Global Sales & Commercial Excellence and General Manager for Rest of Asia, Visteon, said, “The automotive industry is shifting from discrete systems to fully integrated digital platforms, and India is among the fastest-moving markets in this transition. This partnership demonstrates how strategic OEM collaboration can accelerate time-to-market for complex technologies while laying the foundation for software-defined vehicles.”

Alongside the Mahindra announcement, Visteon also showcased the production specifications and OEM implementations of its High-Performance Compute solution built on the Snapdragon Cockpit Elite platform. The solution follows Visteon’s collaboration with Qualcomm Technologies announced at Auto Shanghai 2025 and is now being demonstrated with multiple global OEMs.

The High-Performance Compute platform supports centralised vehicle architectures and software-defined vehicle strategies. It enables on-device AI processing, multi-display support, multi-user experiences and personalised cockpit features. The system uses the Qualcomm Oryon CPU, Qualcomm Adreno GPU and enhanced NPU AI performance, while Visteon’s cognitoAI Concierge digital assistant operates using the company’s QWEN 7B model.

Uday Dodla, Vice-President, Product Management, Visteon, said, “This High-Performance Compute solution addresses a critical challenge our OEM partners face as they transition to centralized architectures. By consolidating multiple ECUs into a single, powerful platform, we're enabling automakers to reduce complexity and costs while delivering the sophisticated AI-driven experiences that consumers increasingly expect.”

Mark Granger, VP, Product Management at Qualcomm Technologies, said, “Visteon's demonstration of its High-Performance Compute solution on the Snapdragon Cockpit Elite platform highlights the momentum toward centralized, software-defined architectures that will power the next era of intelligent, connected vehicles.”

Visteon said the platform is designed to support a common architecture across vehicle segments, allowing OEMs to scale features while consolidating electronic control units and supporting long-term cost efficiencies.

Valeo Join Forces With Hero MotoCorp To Bring ARAS Tech For Two-Wheelers

Valeo - Hero MotoCorp

French tier 1 supplier Valeo and Hero MotoCorp, the world’s largest manufacturer of motorcycles and scooters, have inked a strategic partnership for Advanced Rider Assistance Systems (ARAS).

The partnership will focus on enhancing rider safety by introducing advanced sensing, perception and intelligent technologies tailored specifically for two-wheelers across both entry-level and premium segments, including the OEM’s emerging electric mobility portfolio under VIDA. 

As part of the understanding, they will focus on ARAS by leveraging Valeo’s radar and smart camera tech equipped in Hero MotoCorp’s two-wheeler portfolio. This will not only enhance safety for two-wheeler users in India, but is also expected to drive awareness amongst customers globally.

The partners state that they have already achieved success in its proof-of-concept systems designed to protect both riders and pedestrians.

Marc Vrecko, CEO, Valeo’s Brain Division, said, “We are truly excited to partner with Hero MotoCorp to deliver solutions that will significantly enhance rider safety and create a more secure riding experience for millions of people. This collaboration is a key step in our strategy to bring advanced technology to the rapidly growing mobility market in India and globally.” 

Ram Kuppuswamy, COO, Plant Operations, Hero MotoCorp, said, “At Hero MotoCorp, we are redefining the future of mobility by bringing advanced technology to our products. Our partnership with Valeo marks a significant stride in making mobility smarter, safer and more sustainable with next-gen advanced rider assistance systems. Together, we aim to make two-wheeler safety accessible to everyone and set new standards for innovation and protection globally.” 

The ARAS architecture is developed as a digital co-pilot for riders, providing a 360deg safety envelope around the vehicle, it provides real-time sensing and intelligent alerts. It uses a radar-based system that can provide critical information/warnings such as Forward Collision Warning (FCW), Distance Warning (DW), Lane Change Assist (LCA), Blind Spot Detection (BSD) and Rear Collision Warning (RCW).

On the other hand, the vision system uses high-resolution cameras to provide Pedestrian Detection, Lane Detection, Traffic Sign Recognition and Lane Departure Warning.

Through intelligent image processing the system identifies road signs and obstacles, even in low-light conditions. Through the combination of radar and vision system, the two-wheeler encompasses a comprehensive safety system for two-wheeler users.

SiMa.ai And Synopsys Announce Integration To Accelerate Automotive AI Development

SiMa.ai

SiMa.ai has announced its first integrated capability resulting from a collaboration with Synopsys. The joint solution provides a blueprint to accelerate architecture exploration and virtual software development for automotive Systems-on-Chip (SoCs). These chips support applications including Advanced Driver Assistance Systems (ADAS) and In-Vehicle Infotainment (IVI).

The partnership aims to deliver architectures required for software-defined vehicles. The blueprint allows customers to begin the design and validation of custom AI SoCs and ‘shift left’ software development before silicon is available. This process is intended to reduce development costs and accelerate vehicle time-to-market.

The blueprint provides pre-integrated SoC virtual prototypes and a tool workflow using solutions from both companies.

For Architectural Exploration:

  • SiMa.ai MLA Performance and Power Estimator (MPPE): Enables customers to size machine learning accelerator designs for specific workloads.
  • Synopsys Platform Architect: Used to model workloads and analyse performance, power, memory, and interconnect trade-offs before RTL design.

For Verification and Validation:

  • Synopsys Virtualiser Development Kit (VDK): Facilitates software development using a virtual SoC prototype, which can accelerate vehicle time-to-market by up to 12 months.
  • SiMa.ai Palette SDK: Supports machine learning workflows for edge AI applications.
  • Synopsys ZeBu Emulation: Delivers pre-silicon hardware and software validation to ensure architectures meet workload requirements.

Krishna Rangasayee, Founder & CEO at SiMa.ai, said, "We are pleased with how well the two teams have worked together to quickly create a joint solution uniquely focused on unlocking physical AI capabilities for today's software defined vehicles. Our best-in-class ML platform, combined with Synopsys' industry-leading automotive-grade IP and design automation software creates a powerful foundation for innovation across OEMs in autonomous driving and in-vehicle experiences."

Ravi Subramanian, Chief Product Management Officer, Synopsys, said, "Automotive OEMs need to deliver software-defined AI-enabled vehicles faster to market to drive differentiation, which requires early power optimisation and validation of the compute platform to reduce total cost of development and time to SOP. Our collaboration with SiMa.ai delivering an ML-enabled architecture exploration and software development blueprint supported by a comprehensive integrated suite of tools significantly jumpstarts these activities and enables our automotive customers to bring next-generation ADAS and IVI features to market faster."

Tianma Showcases Automotive Display Technologies At CES 2026

Tianma

Chinese display panel manufacturer Tianma recently exhibited its range of automotive technologies at CES 2026. The company’s solutions include LTPS-LCD, AMOLED and MicroLED technologies designed for cockpits.

The centrepiece of the exhibit was the Smart Cockpit 7.0, an automotive interior and dashboard demonstration. It integrates a 49.6-inch curved ACRUS display with 8K resolution and a slidable AM-OLED display using a gear-rack mechanism.

It also presented InvisiVue, a solution that mimics decorative surfaces like wood or metal when inactive and reveals images through a transmissivity layer when powered on.

The 49.6-inch ACRUS curved display uses Corning ColdForm Technology. It features pixel-level dimming with 210,000 zones, achieving a contrast ratio of 100,000:1. The unit’s R3000 curvature is designed to align with the windshield to reduce blind spots and reflections.

Furthermore, Tianma also presented two HUD technologies – a 43.7-inch Ultra-wide IRIS HUD. It uses a Mini-LED display with peak brightness of 10,000 nits for visibility in sunlight. It features an 85 percent NTSC colour gamut and a curved structure designed to match the windshield’s optical path.

Secondly, an 11.98-inch IRIS HUD, which utilises high-luminance PGU technology, delivering 12,000 nits brightness. The module is less than 15 mm thick for integration in compact vehicles and operates at approximately 6 W to reduce thermal load.

The company also introduced a 34-inch dye liquid crystal dimming glass for rear side privacy windows. This technology uses voltage control of liquid crystal molecules to achieve stepless dimming without physical sunshades.

The system provides a response time of less than 300ms for transitions between privacy and transparent modes. It features a wide viewing angle and a grey-black tone to manage glare within the vehicle interior.