Technology Is Not An End But Means To Make Customer Life Easier: Manu Saale

  • By 0
  • February 04, 2020
Technology Is Not An End But Means To Make Customer Life Easier: Manu Saale

Mercedes-Benz R&D India (MBRDI), founded in 1996 in Bengaluru to support Daimler’s research, IT and product development activities, is now one of the largest global R&D centres outside Germany, employing close to 5000 skilled engineers and a valuable centre to all business units and brands of Daimler worldwide. The centre is also a key entity for Daimler’s future mobility solutions through C.A.S.E (Connected, Autonomous, Shared and Electric) for building autonomous and electric vehicles. The centre’s competencies in engineering and IT have progressed to using AI, AR, Big Data Analytics and other modern technologies to provide seamless connectivity. During an interaction with T Murrali, the Managing Director and CEO of MBRDI, Manu Saale, said, “The centre has been growing phenomenally. We have just started a team on cyber security. . . We have been helping to simulate some stack- related solutions using fuel cells. I’m waiting for a clear strategy from the company for a possible venture into the hydrogen path.”  Edited excerpts:

Q: You could begin with detailing the contribution of MBRDI to the Experimental Safety Vehicle (ESF)?

Saale: The ESF is a concept vehicle. We have taken a GLE platform and tried to predict technologies that are coming up and put its demo version inside. Some of them are just future technologies but they are strictly based on the data we have collected, and the accident research and digital trends that we have seen.

There is a worldwide safety theme, centred in Germany and India, which is studying all these data and statistics to predict how the future should look like. Mercedes-Benz has a history of building concept cars as mobility is changing around us. This time we have decided to put safety in perspective for the new age mobility with ESF2019. This time we have decided to put safety in perspective for the new age mobility.

For example, in a driverless car there is no steering wheel, so where will you put the air bags as it has been placed in the steering wheel. This means that the airbag concept will have to change. If you go white-boarding on this topic you will realise that some fundamental things you have been counting on all these years will change. This international team in Bengaluru supporting Germany has been working on many of these kind of concepts.

We have brought it here for two reasons. One is for the contribution from India. A lot of digital simulations have been done before implementing the hardware. Bengaluru has contributed to the digital evaluation of the new safety concepts in ESF. The other reason is to inspire the engineers to innovate further based on the first level of fantasies that we have created, and how it could be taken to the next level. These are the kind of things we want our engineers to think about; ESF is a pointer in that direction.

Q: What are the possible changes with the emergence of EVs and autonomous vehicles for safety?

Saale: Imagine not being able to predict the position of passengers when a crash happens. If they are sitting in a conference mode, facing one another other, how can they be protected without an airbag in their front? That’s one; second is the use of different materials within the car and the dynamics that could happen in an accident. Third is connection to the source of a fuel tank / pack, not specific to one place but probably spread across the floor of a car. The battery and its chemical components are also critical in a crash situation.

There are many new things when we think about safety in autonomous and electric vehicles; whereas connectivity plays into our hands. I don’t think the industry has exhaustively thought about what new dimensions can come from driving autonomous vehicles.

Q: What happens if the accident is so severe that all the electrical connections are cut off? Has any thought gone into this?

Saale: I am sure they have thought about it. An airbag can pop up in milliseconds; an SOS is message placed post crash. Today, in an instant, we can ping the world somehow, so information of position, latitude, etc is sent out immediately when an accident takes place. Of course it depends a lot on the emergency services and collision response in the country.

Q: What is the role played by MBRDI in the development of Artificial Intelligence (AI) and Augmented Reality (AR)? 

Saale: This is the new age digital; we don’t have to go back to the old world of software alone. Digital has shown new potential in the last few years and we have tried to keep pace with the current trends. AI is certainly one of the buzz words that is coming up.

MBUX, which we flagged off in Bengaluru a few weeks ago, showcases how AI could be used as a technology to make customer life easier in the car. We look at all the use cases to find out what the customer does in a car.

For example, use of camera in a car. During night driving if the driver extends his hand to the vacant seat next to him looking for something, and if it is dark, the camera will sense that he is seeking something and switch on the lights. We need AI for that because we have to understand the hand position and the amount of stretch done; it should not be confused with the driver stretching himself after yawning. Such a simple use case requires a lot of technology. These are things where people look at customer behaviour and say ‘technology is not for the sake of technology but to make customer life easier.’

Q: The Tier-1 companies spread across Germany have come up with many futuristic solutions for vehicles. They have their own research centres. So what is the role of R&D centres of OEMs like this other than integration?

Saale: Every centre has to ride its own destiny. Even if we are a GIC we cannot expect HQ to hold our hand for ever. It’s a typical parent-child relationship and not a customer-supplier one. We have seen all the combinations of GICs working out there in the market. I think we have a good success story here. That is the value-add GIC has to think about.

A survey was done on the value-add from GICs; they used the word entrepreneurship from GICs. It was found that only 6 percent of GICs were entrepreneurial, that were really able to innovate. We were also named in that top 6 percent. It depends on the company culture, relationships, handling discussions with HQ and the local leadership teams. That’s the challenge in a GIC compared to a profit centre that is looking from one customer to another.

Q: You are also in touch with suppliers in India and across the globe for necessary hand-holding?

Saale: Absolutely, imagine a situation where the parents trust the child completely.

Q: You will be the parent and Tier-1s the children?

Saale: No, it is not that way. We behave as Daimler when we talk to Tier-1s. We tell them that ‘you know the car well, so do it by yourself and deliver the product.’ That’s the level of maturity in interaction that one can reach.

Q: When it comes to electronics, OEMs the world over are faced with many regulations. Do you see options for them to comply with all the regulations considering the amount of electronics coming into the car?

Saale: Every new thing is a technical challenge on the table. It can be stricter emission norms or features and functionalities that are difficult to reach, a technical compliance issue that crops up every now and then, and a safety or parking aspect that is covered by many regulations around the world. We thrive on such challenges that have pushed a company like Mercedes to keep on inventing because, among many other things, hardware is getting cheaper and smaller, software capabilities are growing, connectivity is increasing, computing external to the car is possible, and so many other things. OEMs are dealing with authorities, trying to handle what is possible at lower cost, because at the end of the day we have to sell. I am sure that regulators and societies around the world today are looking for some balance between technology and cost.

Q: How do you manage multiple sensors in the vehicle?

Saale: Digital appears to be very complex now but electronics will go through its life cycle and come to a point where man understands its complexity and is able to put it all together. Today, we are talking about sensor fusion - putting together the net of information and seeing it as a whole through various sensors.

Functionalities could range from a switch to radar or lidar with their spectrum of signals, to give various resolutions; the processing capability would be in milliseconds. The more we comprehend the mixed bag of signals we get the better will be our ability to make right decisions.     

Q: With all the facilities that you provide to the driver, are you not actually deskilling him?

Saale: The trend is that people don’t want to get into the hassles of driving a vehicle. Driving is stressful and cumbersome to many which is why the autonomous car would gain popularity. The driver has to just punch in where he/she has to go and the vehicle will do it automatically, saving both mental and physical tension. A completely new user base is being introduced into mobility with software features. We have to look at it positively.

Q: Are you also working on cyber security, on things that get into the car?

Saale: We have just started a team now. Our focus on cyber security is at a centre in Tel Avi, Israel.

Q: Do you see scope to improve the thermal efficiency of Internal Combustion (IC) engines further?

Saale: I think the capability, from an engineering perspective, exists to take the IC engine to the next level. The potential continues to be there and all OEMs talk about it. Possibly it is getting affected by the social and environmental aspects.

Q: It is said that the exhaust from a Euro-6 engine is far better than the atmospheric air in many highly polluted cities and it is not actually polluting. What is your opinion?

Saale: It is true. But people say if electricity is generated from coal then aren’t we contributing to pollution? If we localise electric production to one area with everything contained then it would give us better scope to control it rather than spewing it out of every vehicle tail-pipe in all over the world.

Imagine millions of polluting vehicles moving around compared to millions of electric, which don’t have any tail-pipe emissions, with electricity generated by coal that is centralised; it would be a completely different technical and logistic challenge from the environmental point of view. Regulators, politicians and policy makers are all giving their views on this issue; the improvement in living standards and the coming up of smart cities would affect it. I think we are moving in the right direction with the greening of the environment covering everything. I see this sustainable city living much better pictured with electric moving around me.

Q: Can you tell us about the work done around IoT?

Saale: We are working on digitalisation of our production in many ways. One of the teams for Manufacturing Engineering in Bengaluru focuses on digital methods in manufacturing such as production planning, supply chain, logistics and IoT. The team also works on front-loading of production planning.

Q: What is your contribution to the Sprinter F-CELL, the fuel cell application, that replaced the diesel engine?

Saale:  We have been helping to simulate some stack- related solutions using fuel cells. I’m waiting for a clear strategy from the company for a possible venture into the hydrogen path. (MT)

ARAPL's Subsidiary Wins First US Order For Autonomous Forklift

ARAPL

Affordable Robotic and Automation (ARAPL), India’s first listed robotics company, has announced a significant global expansion milestone: its subsidiary, ARAPL RaaS (Humro), has secured its first international order for the newly developed Atlas AC2000 autonomous forklift – a mobile truck loading and unloading robot.

The order, the company shared, was placed by a large US-based logistics player following comprehensive and successful prototype trials over the last three months at the client’s facilities. The initial order comprises two Atlas AC2000 robots, valued at INR 36 million, and leased for a period of three years.

This initial win is strategically crucial, as it offers Humro a unique opportunity to scale deployment substantially. The client owns 15 warehouses across the US, with a potential to deploy around 15–16 mobile robots in each warehouse over the next two years.

Milind Padole, Founder & Managing Director, ARAPL, said, “Considering the scale and competition in the US market, we are thrilled to announce the success of our product with an established logistics player. This order, following stringent approvals and successful prototype performance, not only opens new doors for us but also is a step towards positioning Make In India mobile robots prominently in the global warehouse robotics sector – otherwise dominated by large US and Chinese players.”

The Atlas AC2000 forklift is a sophisticated machine equipped with LiDAR-based navigation, real-time obstacle detection and precision control algorithms, allowing for safe, 24x7 autonomous truck loading and unloading operations. Humro, which specialises in Autonomous Mobile Robots (AMRs), leverages ARAPL’s proprietary i-ware controller and employs AI, navigation and swarm robotics to deliver its solutions.

To fuel its global vision and growth, ARAPL has proposed a USD 8–10 million investment into Humro, including USD 3 million personally committed by Padole, alongside preferential allotments and debt financing. Despite announcing a 10 percent price adjustment from December 2025 to reflect new US tariffs, Humro emphasised that its products will remain 15–20 percent more cost-effective than competitors.

LTTS Bags $100 Million Agreement From US-based Industrial Equipment Manufacturer

LTTS - Gemini

L&T Technology Services (LTTS), a leading player in AI, Digital & ER&D Consulting Services, has bagged a multi-year agreement valued at USD 100 million from a US-based industrial equipment manufacturer catering to the semiconductor value chain.

As per the understanding, LTTS will support the clients’ initiatives across new product development, sustenance engineering, value engineering and platform automation by leveraging its expertise in AI, computer vision and next-gen automation technologies. Furthermore, LTTS will also set-up a Centre of Excellence (CoE) to support the client in accelerating innovation, simplifying platforms, application engineering and transitioning towards a more digital and AI-enabled future.

Amit Chadha, CEO & Managing Director, L&T Technology Services, said, “We deeply value the trust and confidence our client has placed in us and are committed to further strengthening this relationship as we move ahead with this transformational program. This engagement underscores LTTS’ expertise in leveraging AI-driven innovation to address complex engineering challenges in high-growth industries. By harnessing our capabilities in AI, automation and product engineering, we are empowering our client to further expand their market share and stay ahead of the curve.”

AVL Fuel Cell Truck

The road to decarbonisation for the commercial vehicle sector is proving to be a complex and challenging journey, with experts highlighting that a straightforward ‘combustion engine ban’ for lorries and other commercial vehicles is far more difficult to implement than for passenger cars.

Following the European Union’s strict CO2 fleet regulations for passenger vehicles, which effectively introduce a ban on combustion engines, stringent greenhouse gas limits are also being rolled out for commercial vehicles.

Experts at the International Vienna Motor Symposium stressed that the industry is racing to develop a wide array of solutions to match the huge diversity of vehicles on the road – from long-distance trucks and small delivery vans to construction and agricultural machinery.

Prof. Bernhard Geringer, Chairman of the International Vienna Motor Symposium, noted that the entire commercial vehicle industry is working on a wide range of solutions needed to match the diversity of vehicle types on the road in view of the developments expected in 2026.

The legislative pressure is intense. Tobias Stoll, a project manager at the Research Institute for Automotive Engineering and Vehicle Engines Stuttgart (FKFS), pointed out that EU legislation stipulates ‘a 45 percent reduction in CO2 emissions by 2030 compared to 2019,’ with manufacturers facing heavy financial penalties for non-compliance.

This has set the industry's course, with Frederik Zohm (pictured above), Chief Technology Officer at MAN Trucks & Bus, expecting ‘major transformations in the commercial vehicle sector by 2030.’

Egon Christ, Chief Strategist at transport and logistics service provider Mosolf, commented: ‘The course has been set.’

However, the existing transport model, especially for long-haul journeys, is heavily reliant on fossil fuels. A typical diesel lorry has a service life of 1.5 million kilometres, often covering up to 200,000 kilometres annually.

Ten years ago, EU forecasts anticipated a dominant role for hydrogen and a minor one for battery-electric trucks. The reality has turned out to be ‘exactly the opposite,’ according to Nils-Erik Meyer, a division manager at Akkodis Germany.

Today, there are only around 10 fuel-cell truck models in the EU, compared to over 40 battery-electric models.

While battery-electric vehicles are currently the most technologically advanced, their widespread use hinges on a massive overhaul of charging infrastructure.

Oliver Hrazdera, site manager at Akkodis Austria, calculated: “For trucks with an electric range of 500 kilometres, the EU needs 2,000 charging points with 650 or 1,000 kilowatts of charging power.”

Batteries, payload and hydrogen’s setbacks

Freight companies prioritise fast turnarounds, which necessitates rapid charging. Dorothea Liebig, a manager at Shell Global Solutions Germany, explained that the maximum charging capacity for trucks ‘is up to eight times higher than for cars.’ She also highlighted the alternative of battery swapping, particularly prevalent in China, where it is ‘fully automated and takes just seven minutes’ at the over 1,200 existing battery replacement stations for trucks.

For many journeys, electric trucks are already viable. Meyer from Akkodis calculated that with a mandatory driver break and recharging, a truck could cover ‘around 630 kilometres are possible in one shift. This covers 90 percent of all journeys.’

However, a key disadvantage of battery-electric lorries is the impact on payload, which is reduced by ‘three to six tonnes for the drive system, mainly due to the batteries,’ according to Meyer. By contrast, hydrogen fuel cells only reduce the payload by one tonne.

Despite this advantage, enthusiasm for fuel cells has cooled in Europe. Markus Heyn, Managing Director of Robert Bosch and Chairman of Bosch Mobility, reported that in Europe and the US, a major hurdle has been the substantial cooling requirements for fuel cells, which need ‘two to two and a half times more cooling surface area than diesel trucks,’.

According to Rolf Dobereiner, product line manager at AVL List. This increased requirement consumes up to 40 kilowatts, reducing driving performance and creating challenges for achieving the high-power outputs needed for heavy-duty haulage.

An unexpected dark horse has emerged: the hydrogen combustion engine. This technology offers compelling benefits, as it doesn't require the costly, high-purity hydrogen needed for fuel cells.

Christian Barba, Senior Manager at Daimler Truck, noted that it saves costs ‘as 80 percent of the parts of a diesel engine can be reused.’

Moreover, Anton Arnberger, Senior Product Manager at AVL List, reported that it ‘is the only zero-emission technology that does not require the use of rare earths.’

The hydrogen engine ‘could achieve the torque and power of a gas or diesel engine,’ said Lei Liu, a manager at Cummins in Beijing. Cummins is testing these vehicles in India, where they are seen as a main pillar for transport decarbonisation, given the lack of a comprehensive power grid required for electric trucks.

Developers are also looking at alternatives to gaseous hydrogen. The trend in Europe is moving towards liquid hydrogen, which allows for longer ranges and is cheaper to store.

Furthermore, Yuan Shen, Chief Developer at Zhejiang Geely Holding in China, proposed methanol as ‘the best carrier of hydrogen,’ as it is a liquid fuel that is easy and safer to store and transport.

Shipping, special vehicles and hybridisation

Decarbonisation is equally challenging on the high seas. Andreas Wimmer, a professor at Graz University of Technology, reported that engines for the 100,000 ocean-going vessels in service today have a life span of over 25 years and cost hundreds of millions of euros.

By 2050, these giants must also be CO2-free. While the combustion engine will remain, fossil heavy fuel oil must be replaced by ammonia (considered an ‘up-and-comer’), methanol or limited-quantity biofuel.

The special vehicle sector – such as construction and agricultural machinery – presents one of the toughest challenges. Stefan Loser, department head at MAN Truck & Bus, noted that a forage harvester would need ‘36 tonnes of batteries to run purely on electricity,’ which is impractical. For such machines, which are used intensively for short periods, hydrogen fuel cells or combustion engines running on synthetic fuels will be essential.

Finally, in the USA, where the decarbonisation of transport is ‘less aggressive than in Europe,’ according to Chris Bitsis, head of development at the Southwest Research Institute, hybridisation (the combination of combustion engines and electric drives) is seen as a key strategy to maintain everyday usability while significantly reducing consumption and emissions.

Summing up the current situation, Prof. Bernhard Geringer concluded that battery-electric drives in commercial vehicles are currently only realistic for distances of up to 500 km and with sufficient fast-charging options. He stressed that the special vehicle sector is particularly difficult, which is where ‘hydrogen fuel cell drives or combustion engines with synthetic fuels come into play.’

Omega Seiki Launches World's First Production-Ready Autonomous Electric Three-Wheeler

L-R: Vivek Dhawan, CSO, Omega Seiki Mobility, Uday Narang, Founder and Chairman, Omega Seiki Mobility and Kazunori Kusamizu, Executive Officer, Exedy Corporation and MD, Exedy Clutch India.

Delhi-NCR-headquartered electric vehicle company Omega Seiki Mobility (OSM) has launched Swayamgati, which it claims to be the world’s first production-ready autonomous electric three-wheeler. Now available for commercial deployment, the passenger version is priced at INR 400,000, positioning it as a breakthrough in delivering affordable autonomy for urban India.

The Swayamgati integrates OSM's electric vehicle platform with an AI-driven retrofit autonomy system. This technology, the company shared, offers seamless and intelligent transport, ideal for short-distance use cases within airports, smart campuses, industrial parks, gated communities and dense urban environments. The vehicle operates based on prior mapping, which is customised to a client's specific route or distance requirements.

The launch capitalises on the rapidly growing global Autonomous Electric Vehicle (AEV) market, which a 2025 McKinsey report suggests will surpass USD 620 billion by 2030. In India, where urban congestion is a pressing issue, AEVs offer a unique opportunity to deliver safe, efficient and cost-effective mobility in structured settings.

Uday Narang, Founder & Chairman, Omega Seiki Mobility, said, “The launch of Swayamgati is not just a product introduction – it’s a bold step into the future of Indian transportation. Autonomous vehicles are no longer a futuristic concept; they are a present-day necessity for nations seeking sustainable and scalable mobility. With Swayamgati, we are showing that India doesn’t need to follow global trends – we can lead them. This vehicle proves that cutting-edge tech like AI, LiDAR and autonomous navigation can be made in India, for India, and at a price point that makes it truly accessible. We are building technology that serves people – not just headlines.”

The vehicle has successfully completed Phase 1 testing, which involved navigating a 3km autonomous route with real-time obstacle detection and safe passenger movement, all without human intervention. The commercial rollout in controlled environments now begins with Phase 2.

The Swayamgati is purpose-built to handle the unique challenges of Indian roads and high-density, low-speed traffic. Being 100 percent electric, it contributes to zero tailpipe emissions while significantly reducing operational costs. Crucially, its affordability ensures this cutting-edge technology is accessible beyond just luxury fleets.

Vivek Dhawan, Chief Strategy Officer, Omega Seiki Mobility, said, “Swayamgati is a result of deep R&D and a clear vision: to democratise autonomy. Our autonomous electric three-wheeler enables us to leapfrog traditional EV barriers and bring intelligent systems into everyday mobility. Autonomous EVs will redefine how India moves in cities, campuses, and industrial zones – and we are proud to be at the forefront of that transformation.”

At present, OSM has set-up strong manufacturing facilities in Faridabad and Chakan (Pune). This is complemented by a growing network of over 200 dealerships and service centres across India.