The road to decarbonisation for the commercial vehicle sector is proving to be a complex and challenging journey, with experts highlighting that a straightforward ‘combustion engine ban’ for lorries and other commercial vehicles is far more difficult to implement than for passenger cars.
Following the European Union’s strict CO2 fleet regulations for passenger vehicles, which effectively introduce a ban on combustion engines, stringent greenhouse gas limits are also being rolled out for commercial vehicles.
Experts at the International Vienna Motor Symposium stressed that the industry is racing to develop a wide array of solutions to match the huge diversity of vehicles on the road – from long-distance trucks and small delivery vans to construction and agricultural machinery.
Prof. Bernhard Geringer, Chairman of the International Vienna Motor Symposium, noted that the entire commercial vehicle industry is working on a wide range of solutions needed to match the diversity of vehicle types on the road in view of the developments expected in 2026.
The legislative pressure is intense. Tobias Stoll, a project manager at the Research Institute for Automotive Engineering and Vehicle Engines Stuttgart (FKFS), pointed out that EU legislation stipulates ‘a 45 percent reduction in CO2 emissions by 2030 compared to 2019,’ with manufacturers facing heavy financial penalties for non-compliance.
This has set the industry's course, with Frederik Zohm (pictured above), Chief Technology Officer at MAN Trucks & Bus, expecting ‘major transformations in the commercial vehicle sector by 2030.’
Egon Christ, Chief Strategist at transport and logistics service provider Mosolf, commented: ‘The course has been set.’
However, the existing transport model, especially for long-haul journeys, is heavily reliant on fossil fuels. A typical diesel lorry has a service life of 1.5 million kilometres, often covering up to 200,000 kilometres annually.
Ten years ago, EU forecasts anticipated a dominant role for hydrogen and a minor one for battery-electric trucks. The reality has turned out to be ‘exactly the opposite,’ according to Nils-Erik Meyer, a division manager at Akkodis Germany.
Today, there are only around 10 fuel-cell truck models in the EU, compared to over 40 battery-electric models.
While battery-electric vehicles are currently the most technologically advanced, their widespread use hinges on a massive overhaul of charging infrastructure.
Oliver Hrazdera, site manager at Akkodis Austria, calculated: “For trucks with an electric range of 500 kilometres, the EU needs 2,000 charging points with 650 or 1,000 kilowatts of charging power.”
Batteries, payload and hydrogen’s setbacks
Freight companies prioritise fast turnarounds, which necessitates rapid charging. Dorothea Liebig, a manager at Shell Global Solutions Germany, explained that the maximum charging capacity for trucks ‘is up to eight times higher than for cars.’ She also highlighted the alternative of battery swapping, particularly prevalent in China, where it is ‘fully automated and takes just seven minutes’ at the over 1,200 existing battery replacement stations for trucks.
For many journeys, electric trucks are already viable. Meyer from Akkodis calculated that with a mandatory driver break and recharging, a truck could cover ‘around 630 kilometres are possible in one shift. This covers 90 percent of all journeys.’
However, a key disadvantage of battery-electric lorries is the impact on payload, which is reduced by ‘three to six tonnes for the drive system, mainly due to the batteries,’ according to Meyer. By contrast, hydrogen fuel cells only reduce the payload by one tonne.
Despite this advantage, enthusiasm for fuel cells has cooled in Europe. Markus Heyn, Managing Director of Robert Bosch and Chairman of Bosch Mobility, reported that in Europe and the US, a major hurdle has been the substantial cooling requirements for fuel cells, which need ‘two to two and a half times more cooling surface area than diesel trucks,’.
According to Rolf Dobereiner, product line manager at AVL List. This increased requirement consumes up to 40 kilowatts, reducing driving performance and creating challenges for achieving the high-power outputs needed for heavy-duty haulage.
An unexpected dark horse has emerged: the hydrogen combustion engine. This technology offers compelling benefits, as it doesn't require the costly, high-purity hydrogen needed for fuel cells.
Christian Barba, Senior Manager at Daimler Truck, noted that it saves costs ‘as 80 percent of the parts of a diesel engine can be reused.’
Moreover, Anton Arnberger, Senior Product Manager at AVL List, reported that it ‘is the only zero-emission technology that does not require the use of rare earths.’
The hydrogen engine ‘could achieve the torque and power of a gas or diesel engine,’ said Lei Liu, a manager at Cummins in Beijing. Cummins is testing these vehicles in India, where they are seen as a main pillar for transport decarbonisation, given the lack of a comprehensive power grid required for electric trucks.
Developers are also looking at alternatives to gaseous hydrogen. The trend in Europe is moving towards liquid hydrogen, which allows for longer ranges and is cheaper to store.
Furthermore, Yuan Shen, Chief Developer at Zhejiang Geely Holding in China, proposed methanol as ‘the best carrier of hydrogen,’ as it is a liquid fuel that is easy and safer to store and transport.
Shipping, special vehicles and hybridisation
Decarbonisation is equally challenging on the high seas. Andreas Wimmer, a professor at Graz University of Technology, reported that engines for the 100,000 ocean-going vessels in service today have a life span of over 25 years and cost hundreds of millions of euros.
By 2050, these giants must also be CO2-free. While the combustion engine will remain, fossil heavy fuel oil must be replaced by ammonia (considered an ‘up-and-comer’), methanol or limited-quantity biofuel.
The special vehicle sector – such as construction and agricultural machinery – presents one of the toughest challenges. Stefan Loser, department head at MAN Truck & Bus, noted that a forage harvester would need ‘36 tonnes of batteries to run purely on electricity,’ which is impractical. For such machines, which are used intensively for short periods, hydrogen fuel cells or combustion engines running on synthetic fuels will be essential.
Finally, in the USA, where the decarbonisation of transport is ‘less aggressive than in Europe,’ according to Chris Bitsis, head of development at the Southwest Research Institute, hybridisation (the combination of combustion engines and electric drives) is seen as a key strategy to maintain everyday usability while significantly reducing consumption and emissions.
Summing up the current situation, Prof. Bernhard Geringer concluded that battery-electric drives in commercial vehicles are currently only realistic for distances of up to 500 km and with sufficient fast-charging options. He stressed that the special vehicle sector is particularly difficult, which is where ‘hydrogen fuel cell drives or combustion engines with synthetic fuels come into play.’
Comments (0)
ADD COMMENT